Journal of Organometallic Chemistry, 80 (1974) C29—C30

• Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

ortho-METALATION OF FERROCENE

HOWARD ALPER

Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13901 (U.S.A.)

(Received August 7th, 1974)

Summary

The first example of intramolecular ortho-metalation of a metallocene by a transition metal is described.

There has been considerable interest in recent years in the intramolecular ortho-metalation of nitrogen, phosphorus, and sulfur donor ligands by transition metals [1]. Although numerous ortho-metalated complexes have been prepared, none involve intramolecular metalation of a metallocene. At least one unsuccessful attempt to synthesize such a complex (i.e., of a ferrocene derivative) has been reported in the literature [2]. This communication reports the first example of a transition metal ortho-metalated ferrocene.

Thiopivaloylferrocene (II)*, a purple oil [IR(neat) ν (CS) 1243 cm⁻¹; NMR (CDCl₃) δ 1.47 (s, 9H, C(CH₃)₃), δ 4.10 (s, 5H, C₅H₅), δ 4.63 (t, 2H, H_{3,4}), δ 5.09 (t, 2H, H_{2,5})], was obtained in 78% yield by treating pivaloylferrocene (I) with P₄S₁₀ and NaHCO₃ in diglyme for 21 h at room temperature [3]. Treatment of the thioketone II with an equimolar amount of sodium tetrachloropalladate in methanol afforded the deep green orthometallated complex III [m.p. 220° (dec.)] in 62% yield.

The molecular weight of III (osmometry), was 839, in good agreement with the calculated value of 856. The thiocarbonyl stretching absorption (1222 cm $^{-1}$) occurred at lower wave number than that observed for II. The NMR spectrum (CDCl₃) of the cyclopalladated complex is consistent with the assigned structure showing single proton absorptions at δ 5.13, 4.73, and 5.77, due to H₃, H₄, and H₅ respectively, as well as singlets at δ 1.43 (9H, C(CH₃)₃) and at δ 4.45 (5H, C₅H₅).

The simple synthesis of complexes of structural type III should provide an entry into novel metallocene chemistry.

^{*}Satisfactory (= 0.4%) C, H, S, Fe, Pd, Cl analyses were obtained for the new compounds.

I am indebted to the National Institutes of Health for support of this research.

References

- 1 H. Alper and A.S.K. Chan, J. Amer. Chem. Soc., 95 (1973) 4905 and ref. cited therein.
- W.T. Flannigan, G.R. Knox and P.L. Pauson, J. Chem. Soc. (C), (1969) 2077.
 J.W. Scheeren, P.H.J. Ooms and R.J. F. Nivard, Synthesis, (1973) 149.